경사하강법 원리1 경사하강법(Gradient Descent)이란? 경사하강법(Gradient Descent)이란 무엇일까? 신경망의 학습을 위해선 손실을 줄여나가야 하는데 이때 손실함수 J가 함수의 미분값을 계산하고 있을때 기울기가 완만해질수 있도록 (즉 경사가 낮아지는) 가중치를 변경하는 방법이다. 간단하게 말해 함수의 기울기를 이용하여 함수 값이 낮아지는 방향으로 독립 변수의 값을 변형시켜가면서 최종적으로 최소 함수 값을 갖도록 하는 독립 변수의 값을 찾는 방법이다. 좋은 예시로 시야가 안보일때 산에서 내려오기 위하여 산의 기울기를 더듬으며 가장 아래로 갈 수 있는 방향을 찾는 방법이 예시이다. 산에서 내려가기 위해 오르막길을 선택하지는 않을 것이기 때문이다. *gradient를 한글로 번역하면 기울기이다. 왜, 언제 경사하강법을 사용할까? 함수의 최솟값을 찾기 위.. 2022. 4. 29. 이전 1 다음